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SUMMARY

This work investigates the mitigation and elimination of scheme-related oscillations generated in compact
and classical fourth-order finite difference solutions of stiff problems, represented here by the Burgers
and Reynolds equations. The regions where severe gradients are anticipated are refined by the use of
subdomains where the grid is distributed according to a geometric progression. It is observed that, for
multi-domain solutions, both the classical and compact fourth-order finite difference schemes can exhibit
spurious oscillations. When present, the oscillations are initially generated around the interface between
the uniform and non-uniform grid subdomains. Based on a thorough study of the grid distribution
effects, it is shown that the numerical oscillations are caused by inadequate geometric progression ratios
within the non-uniformly discretized subdomains. Indeed, accurate solutions are obtainable if and only
if the grid ratios in the non-uniform subdomains are greater than a critical threshold ratio. It is concluded
that high-order classical and compact schemes can be used with confidence to efficiently solve one- or
two-dimensional problems whose solutions exhibit sharp gradients in very thin regions, provided that the
numerically generated oscillations are eliminated by an appropriate choice of grid distribution within the
non-uniformly discretized subdomains. Copyright © 1999 John Wiley & Sons, Ltd.
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1. INTRODUCTION

In fluid dynamics, one is often faced with stiff problems whose solutions involve sharp
variations in the dependent variable over very thin regions [1]. In order to numerically resolve
these ‘boundary or interior layers,’ which can be as much as six orders of magnitude smaller
than the overall length of the domain (see e.g. [2]), one must use a grid distribution refined
commensurately with the gradients in those layers. It is imperative, however, to localize the
finer grid resolutions to only those regions in order to avoid making the computational
solution of such problems prohibitively expensive. The localization of grid refinement can be
achieved by a combined use of multi-domains and non-uniform grid distributions. Another
advantageous approach to maintaining computational efficiency is the use of higher-order
methods, such as classical and compact fourth-order finite difference methods. These methods
have been successfully used in fluid dynamics, but only for problems with moderate gradients
over thin layers. In fact, it is widely held that when applied to stiff problems discretized with
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non-uniform grid distributions, higher-order methods achieve much lower than expected
accuracies [3,4], with scheme-related spurious oscillations limiting the use of what otherwise are
highly efficient schemes. The goal of this work is, therefore, to investigate this important
question regarding the suitability of classical and compact fourth-order FD methods for
solving stiff problems on non-uniform, multi-domain grids. During this investigation it will
also be possible to ascertain in detail the potential role played by the grid distribution in the
elimination of scheme-related spurious oscillations, and to determine the existence of a
minimum threshold value of the grid ratio used to geometrically refine those regions where
severe gradients are anticipated. Knowledge of the threshold value, above which spurious
oscillations are eliminated, makes it possible to achieve higher-order-accurate solutions with a
minimal grid resolution.

Improvements in the solutions of boundary layer problems, such as the ones mentioned
above can be obtained by the use of adaptive grid techniques [5,6] as well as by local grid
refinement [3]. Additionally, oscillations can be dampened either by adding artificial viscosity
to the original equations or by using dissipative schemes such as the upwind schemes [1].
However, as pointed out by Gresho and Lee [7], such dissipative techniques provide accurate
solutions only when a fine grid is used, which guarantees that ‘the numerical diffusion is
significantly less than the physical diffusion’. Another approach is to use filtering algorithms
as post-processors to the conventional techniques [8,9]. However, an effective approach for
resolving the large gradients in boundary and interior layers is to refine the grid only in those
layers without affecting the remainder of the computational domain.

In this paper, the grid refinement is achieved by allowing the grid to grow geometrically
within the boundary or interior layer subdomains, while the remainder of the domain is
discretized with a uniform spacing. The geometrically distributed grid is generated very
efficiently and makes it possible to obtain accurate solutions for boundary layer problems.
Fletcher [3] and Varghese and Raad [10] among many other researchers, indicate that it is
preferable to distribute the grid points in the non-uniform subdomains with a ratio larger than
a threshold value of 0.8. This assertion is motivated by the fact that as the grid ratios approach
1, the higher formal accuracy of FD schemes on a uniform grid is recovered.

High-order FD schemes and their applicability to problems in fluid dynamics have received
much attention. Fornberg [11] provided an algorithm for generating high-order FD formulae
on arbitrarily spaced grids. Hoffman and Reddy [12] studied high-order approximations
formulae for functions and their derivatives by means of Chebyshev polynomial interpolation.
Beam and Warming [13] and Lele [14] studied the dissipative and dispersive properties of
high-order methods, but in the context of a uniform grid. Gartland [15] used high-order FD
schemes on a uniform mesh to solve the model linear source problem − (pu %)%+qu= f where
p, q, and f can have jump discontinuities.

Compact FD schemes have been successfully applied to fluid dynamics problems with
moderate gradients over a thin interior or boundary layer. Adam [16] proposed compact FD
boundary formulations and improved the efficiency of compact schemes for the solution of
Burgers equation. Rubin and Khosla [17] provided compact schemes on a non-uniform mesh
by the use of spline interpolation. Aubert and Deville [18] applied compact schemes to a
mapped domain for a Stokes flow problem with Re]100.

In Section 2, a method based on the factored implicit scheme of Beam and Warming [13] for
a class of conservative equations is presented along with an analysis of the effects of varying
the defining grid parameters on the non-uniform grid distribution. Section 2.3 describes briefly
the derivations of classical and compact FD schemes on a non-uniform mesh with application
to a geometrically refined grid. The test problems are described in Section 3. In Section 4, it
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is shown that numerical oscillations are generated at the interface between the uniform and
non-uniform grid subdomains. The interface oscillations are shown to be due to an inadequate
geometric growth ratio r within the non-uniform grid subdomain. Based on a combined study
of the effects of the grid parameters on the spurious oscillations, it is shown that the
oscillations can be eliminated with a minimum of additional grid points (and therefore with
minimal additional computational effort) by using geometric ratios whose values are greater
than threshold values. Larger grid ratios are achieved by decreasing the value of the interface
ratio or by increasing the width of the non-uniform subdomain rather than by decreasing the
uniform grid spacing. Although decreasing the uniform grid spacing has traditionally been the
main focus in obtaining more accurate solutions, it is a much less effective and prohibitively
more expensive choice.

2. METHODOLOGY

2.1. Temporal approximation scheme

In this section, the development of a two-dimensional, implicit, FD method for non-linear
conservative equations, based on the Beam and Warming [13] factored-implicit scheme, is
presented, which is a general algorithm for solving equations that can be written in the
conservative form:

(u
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If the Beam and Warming [13] conservation law is used in conjunction with fourth-order-accu-
rate spatial approximations, the first derivatives of the dependent variable must be computed
beforehand at every time step with the same high-order of accuracy. The expensive computa-
tion of the first derivatives can be avoided by writing a conservation law equation in an
alternative form, namely:
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which can be readily discretized with high-order FD schemes. Here h(x, y, t) is a known
function included for the sake of generality. Although Equation (1) cannot in general be
rewritten as Equation (2), it must be emphasized that most equations that describe fluid
dynamics phenomena can be cast in a conservative form similar to that given by Equation (2).
For example, the x-component of the Navier–Stokes equations for a viscous compressible
fluid can be written in the following conservative form:

(u*
(t

=
�

−
1
r

u*2�
x

+
�

−
1
r

u*6*
�

y

+
�4n

3
u*
�

xx

+ (nu*)yy+
�n

3
6*
�

xy

, (3)

where r, u*=ru and 6*=r6 are taken as primary variables instead of r, u and 6. As shown
in Section 3, Burgers and Reynolds equations can also be written in conservative form given
by Equation (2).

Various time differencing schemes were combined by Warming and Beam [19] into a general
Padé form as follows:

Dukuk+1−uk
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where superscripts k−1, k and k+1 refer to the old, current and new time levels respectively;
s1, s2 and s3 are constants defined as:
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and O [ . . . ] refers to the order of magnitude of the temporal truncation error. For the 3-point
backward time differencing scheme used throughout this work, z and h are set equal to 1 and
0.5 respectively. Other time differencing formulae can be obtained by choosing appropriate
values for z and h. Introducing Equation (2) into Equation (4) gives:!
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where the subscripts x and y refer to partial differentiation with respect to those independent
variables. The bracketed quantity on the left-hand-side of Equation (6) denotes a linear,
differential operator that operates on Duk. Upon factorization, the following one-dimensional
equations are obtained:
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where Du* is a dummy variable, and the additional functions Vk, W k, Zk,k− l are defined as
follows:
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The solution is accomplished in two stages. The intermediate values (Du*) are first computed
from Equation (7) by sweeping in the x-direction. Then, the intermediate results are used on
the right-hand-side of Equation (8) to generate the values of the unknowns at the new time
level by sweeping in the y-direction.

If u(x, y, t) and h(x, y, t) are vectors, then all derivatives with respect to u and h in
Equations (7)–(11) are replaced with the corresponding Jacobians.
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2.2. Discretization of the computational domain

For a problem with boundary or interior layers, it is often preferable to subdivide the
computational domain into two (or more) subdomains of different grid resolutions in order to
refine only those regions where large gradients are encountered. The uniform grid spacing, Dx0,
is defined as:

Dx0=L/(nx−1), (12)

where L is the length of the domain and nx is the initial number of grid points. Next, as shown
in Figure 1, the last kn uniform spacings are replaced with a subdomain refined geometrically
with a progression ratio r\1 according to the relation:

Dxi=rDxi−1, for i=2, nr−1, (13)

where nr is the number of grid points in the non-uniform subdomain. As a result of domain
decomposition, the total number of grid points in the computational domain becomes:

nt=nx−kn+nr. (14)

The first non-uniform spacing is taken to be a fraction r0 of the uniform grid spacing Dx0, i.e.

Dx1=r0Dx0. (15)

The value of r is given implicitly by the relation:

kn=r0

(rnr−1−1)
r−1

. (16)

The grid points are distributed in the non-uniform subdomain so that the last spacing is
smaller than a corrected boundary layer thickness, namely:

Dxnr−15o/ka, (17)

where ka is an ‘assurance factor’ used to guarantee the placement of at least a few grid points
in the thin layer, and o is the estimated thickness of the boundary layer.

The parameters Dx0, ka, kn and r0 control the grid distribution in the computational domain.
Hence, it is important to ascertain their influence if an appropriate grid is to be prescribed. By
combining Equations (16) and (17), one can obtain a relation for the non-uniform grid ratio
r in terms of the four control parameters:

r=
kn−r0

kn−o/(kaDx0)
. (18)

For a typical stiff problem (i.e. o�1), r depends very weakly on Dx0 or ka. The two parameters
Dx0 and ka exert a fine control on the geometric progression ratio r, while kn and r0 exert a

Figure 1. Interface grid distribution with grid parameters Dx0, kn, ka and r0 defined.
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rough control on the value of r. The parameter kn being an integer provides a discrete control
over the ratio r, while r0, which is a real number, exerts a continuous control over r.

2.3. Spatial approximation in a non-uniform mesh

The two fourth-order-accurate FD schemes employed in this paper are the pentadiagonal
and tridiagonal [14] schemes, and are referred to here as classical and compact [18] respec-
tively. When approximating a spatial derivative in a given direction at a grid point, compact
FD approximations present the advantage of involving less neighbors than classical fourth-
order methods (three instead of five in each spatial direction).

However, the compact FD schemes are tedious to derive for non-uniform grid distributions
by use of Taylor series expansions. Hence, in a geometrically refined grid, numerical differen-
tiation by means of Chebyshev polynomials [12] or spline interpolation [17] provide a more
systematic approach to deriving high-order approximation formulae. As an example, the
fourth-order compact FD approximation will be derived by means of Legendre interpolation.
The approximations of the first and second derivatives, given by 5-point Legendre interpola-
tion on a non-uniform mesh [20] are:

f %(xj)= %
5

k=1

f(xk)L %k(xj) and f ¦(xj)+ %
5

k=1

f(xk)L¦k(xj), (19)

where Lk(x) is the kth Legendre polynomial (see Appendix A for details). The centered
compact FD approximations for the first and second derivatives appear as:

a1f %(xj−1)+ f %(xj)+b1f %(xj+1)= [r1f(xj−1)+j1f(xj)+t1f(xj+1)]/Dxj,
and
a2f ¦(xj−1)+ f ¦(xj)+b2f ¦(xj+1)= [r2f(xj−1)+j2f(xj)+t2f(xj+1)]/Dxj

2.
Ì
Â

Å
(20)

respectively, where the former is fourth-order-accurate and the latter is third-order-accurate.
The compact discretization of Equations (7) and (8) is illustrated on the following equation:

f+ (Af )x+ (Bf )xx=Z+Wx+Vxx, (21)

where A, B, Z, W and V are functions identified by comparing Equation (21) with each of the
original Equations (7) and (8). Formulae (20) can be written, in shorthand notation, as:

F( f %)=G( f ),
and
S( f ¦)=T( f ),

Ì
Â

Å
(22)

where F, G, Sand T are linear operators.
By applying formulae (22) on Equation (21), one obtains the following final form of the

finite difference equation:

F(S( f ))+S(G(Af ))+F(T(Bf ))=F(S(Z))+S(G(W))+F(T(V)). (23)

With this approach, the one-sided formulae near the boundaries and interfaces can be obtained
as conveniently as the centered FD formulae. Although the following discussion on FD
discretization at grid boundaries is concerned with problems that are subject to Dirichlet
boundary conditions, the methodology presented here is not limited to these types of problems.
At grid points adjacent to boundaries, one-sided approximations are derived for the compact
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operators [14], in which a 2-point stencil for the operators Fand S (identical in this case) was
used, and one-sided, 5-point stencil operators for G and T. As a result, the following finite
difference equation is obtained at the boundaries:

F( f )+G(Af )+T(Bf )=F(Z)+G(V)+T(W). (24)

In order to better understand the FD discretization used at the boundaries, the finite
difference equations used near grid boundaries are presented next. For the sake of simplicity
in the following discussion, it is understood that the grid distribution adjacent to the left
boundary is uniform while that near the right boundary is non-uniform. Hence, the uniform
grid FD formulae used for the first and second derivatives near the left boundary become:

f %(x1)+10f %(x2)=
−55f(x1)−52f(x2)+144f(x3)−44f(x4)+7f(x5)

12Dx
, (25)

f ¦(x1)+10f ¦(x2)=
145f(x1)−304f(x2)+174f(x3)−16f(x4)+7f(x5)

12Dx2 . (26)

At the right boundary, where the grid distribution is considered to be non-uniform, the
derivatives are approximated by the use of Legendre interpolation polynomials at location
x=xnt−1 by the use of the one-sided, 5-point grid stencil (nt−4, nt−3, nt−2, nt−1, nt):

f %(xnt−1)= %
nt

k=nt−4

f(xk)L %k(xnt−1) and f ¦(xnt−1)= %
nt

k=nt−4

f(xk)L¦k(xnt−1), (27)

where Lk(x) is the kth Legendre polynomial (see Appendix A).
Additionally, the use of Legendre interpolation provides a straightforward approach to

deriving fourth-order FD formulae at the interface between subdomains where different
growth ratios are used in refining the grid. At the interface between the uniform and
non-uniform grids, where two ratios r0 and r are used to discretize the grid, the formal
compact differentiation given by the relation (23) is not valid. The compact differentiation
does not hold because the left-hand-side FD operators, F for the first derivative and S for the
second derivative respectively, are not identical for the neighboring points. For the neighboring
grid points around the interface between the uniform and non-uniform grids the same 5-point
central, classical FD formulas are used for both compact and classical FD approximations.

3. TEST PROBLEMS

Two different representative equations whose solutions exhibit boundary or interior layers are
used in this investigation. For the case of the Burgers equation, both the shock and the sine
wave problems are studied. For the case of the Reynolds equation of lubrication, the problem
of an air bearing separating a smooth translating surface and a sinusoidally textured stationary
slider is considered [21].

3.1. Burgers equation

The simplest equation combining non-linear convection and diffusion effects is the Burgers
equation, which when written in conservation form appears as:

(u
(t

=
(

(x
(au−0.5u2)+

(2

(x2 (nu), (28)
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where n is the kinematic viscosity and a is a constant. For the sine wave propagating problem,
a=0 and the initial and boundary conditions are:

u(x, 0)= −sin(px), u(−1, t)=u(0, t)=0. (29)

For small values of n, the solution develops into a sawtooth wave at the origin. The exact
solution is obtained by Hermite integration of the solution provided by the Cole–Hopf
transformation.

A second Burgers problem, that of a stationary shock wave, is also considered by setting
a=0.5, along with the following initial and boundary conditions:

u(−2, t)=1, u(0, t)=0, u(x, 0)=Í
Á

Ä

1
0.5
0

if xB0
if x=0
if x\0

. (30)

Initially, the solution is a shock located at x=0. As time progresses, the stationary shock is
smoothed by the dissipative term. Since Hermite integration applied to compute the integrals
involved in the Cole–Hopf solution does not provide accurate exact solutions for this Burgers
problem with n510−3, the exact solution is written in an alternative form [22]:

uex(x, t)=
1

1+exp[(x−0.5t)/(2n)]
erfc[−x/
4nt ]

erfc[(x− t)/
4nt ]

. (31)

3.2. Reynolds equation of lubrication

The Reynolds equation of lubrication is considered because of its non-linear nature and
because for an inclined, plane, infinitely wide, slider bearing, it has an exact solution that was
provided by Burgdorfer [23]. In this work, however, the more general case of a finite width
bearing is considered. In non-dimensional conservative form, the compressible two-dimen-
sional Reynolds equation [2] appears as:

(u
(t

=
(

(x
(u+1.5u2hx/L)+

(2

(x2 (0.5u2h/L)+R2 (

(y
(1.5u2hy/L)+R2 (

2

(y2 (0.5R2u2h/L),

(32)

where u=ph, p(x, y, t) is the fluid pressure, h(x, y, t) is the bearing clearance, R is the bearing
length to width aspect ratio, and L=6mVLx/(PaH0

2) is the gas bearing number. Here, m is the
fluid viscosity, V is the velocity of the translating surface, Lx is the slider length, Pa is the
ambient pressure, and H0 is the clearance at the trailing edge of the slider. For a finite width
wedge gas bearing in which only the stationary slider is sinusoidally textured, the clearance
height function h is given by:

h(x, y, t)=h1+ (1−h1)x+o sin(bx), (33)

where h1 is the inlet to outlet clearance ratio, o is the roughness amplitude, and b is the
roughness angular frequency. Equation (32) is solved subject to initial and boundary condi-
tions of an ambient pressure. The pressure solutions exhibit side and trailing edge boundary
layers whose thicknesses are of order L−1/2 and L−1 respectively. The bearing number L can
vary over a wide range from 1 to 107 (see e.g. [10]).
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Figure 2. Pressure solution for a textured slider bearing after five time steps for a boundary layer thickness equal to
10−6, Dx0=0.02 and ka=15.

4. INTERFACE SENSITIVITY

It is widely known that when solving problems with internal or boundary layers, numerical
oscillations can appear in and around the layers if these are not adequately resolved with
appropriately high spatial resolutions. For the test problems considered in this work, the
authors have discovered, however, that numerically generated oscillations appear at the
interface between the uniform and the non-uniform grid subdomains e6en when the boundary
or interior layers are properly resolved. These oscillations will be referred to as interface
oscillations. The authors quickly point out, however, that even though the oscillations appear
at the interface, the interface is not the source of these oscillations. As will be shown in this
section, the oscillations are due to an inappropriate value of the grid ratio used to geometri-
cally distribute grid points in the non-uniform subdomain. These interface oscillations are
observed in solutions obtained both with classical and compact schemes. In the remainder of
this section, some of the basic features of the interface oscillations are analyzed and the role
played by the interface grid distribution in eliminating them is investigated.

First, it is established that the interface oscillations do not result from an inappropriate
resolution of the boundary layer. The pressure solutions in Figure 2 exhibit spurious oscilla-
tions even though the boundary layer is adequately resolved. Indeed, placing more grid points
in the boundary layer by increasing ka has little effect on the interface oscillations as can be
seen in Figure 3. Therefore, the oscillations do not originate from the boundary layer. We find,
in fact, that the oscillations appear around the interface between the uniform and non-uniform
grid subdomains. As the interface is moved by varying kn, the oscillations are seen to move
accordingly, as shown in Figure 2.

Second, the effects of the uniform grid spacing Dx0 on the interface oscillations are examined
and it is noted that only small reductions in their intensity are achieved as Dx0 is decreased.
For example, when the Reynolds problem is solved with the compact scheme for a bearing
number L=106 and a grid distribution generated with kn=3, ka=15 and r0=1, strong
oscillations appear after a few time steps and the solution shortly thereafter blows up even as
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Figure 3. Pressure solutions after ten time steps with a boundary layer thickness equal to 10−6 and with grid
parameters Dx0=10−2, r0=0.8 and kn=4.

Dx0 is varied from 0.01 to 0.002. A further reduction of Dx0 from 0.00167 to 0.00083 reduces
the maximum amplitude of the oscillations from 0.065 to 0.0058, but does not eliminate the
oscillations, although the total number of grid points nt is increased from 634 to 1232. The
results of another example that involves the solution of the Burgers shock wave problem are
summarized in Table I for two different but equivalent grid configurations. For either case, as
the number of grid points increases from 177 to 1739, the geometric progression ratio r
remains nearly constant as indicated by Equation (18), and the root-mean-square (rms) errors
decrease by only a factor of 3. The rms error values shown are a measure of the discrepancy
between the numerical and exact results. Therefore, it is not satisfactory to refine the entire
grid by reducing the uniform spacing Dx0 in order to eliminate the interface oscillations.

Third, it is established that interface oscillations are mitigated by varying r0. As shown in
Figure 4 for the sinusoidally textured slider problem, the interface oscillations become
apparent after only ten time steps, and if the solution is continued, these oscillations would
spread out over the entire domain and even lead to divergence for cases with r0\0.75.
However, if r0 is reduced from 0.75 to 0.65, the oscillations decrease in intensity and are finally
eliminated when r0=0.65, as shown in Figure 5. Furthermore, contrary to the case when Dx0

was reduced, variations in r0 do not dramatically increase the total number of grid points nt.
For example, reducing r0 from 0.8 to 0.72 increases the total number of grid points from 152
to only 158, while the maximum amplitude of the oscillations drops considerably from 0.56 to

Table I. The effect of kn and r0 on the grid distribution and the rms error at t=0.2 for
the Burgers shock wave problem with Re=106 and Dt=0.005

Dx0 kn=6; r0=1.0; ka=15 kn=4; r0=0.7143; ka=15

rms error nt r rms errornt r

0.85714051779.06886E−40.8571432 9.07108E−41770.01
4.88110E−40.001848 606 0.8571429 4.88221E−4606 0.8571450

0.000979 3.65150E−40.857145410823.65069E−40.85714681082
2.87994E−40.857148617392.87932E−40.857149217390.000594
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Figure 4. Pressure solutions after ten time steps with a boundary layer thickness equal to 10−6 and with grid
parameters Dx0=10−2, kn=2 and ka=15.

0.08. Consequently, given a kn, there exists a range of r0 for which the oscillations are reduced
and eventually eliminated. An optimum upper bound value for r0 can be identified by slowly
decreasing it, in steps of 0.01, until convergence is attained and an accurate solution is
obtained. For example, considering the compact scheme and a grid distribution given by
Dx0=0.01, kn=2 and ka=15, the optimum r0 value is found to be 0.51 as shown in Table II.
When the analysis is repeated for the Burgers equation, the same behaviors are observed for
both the boundary layer and the interior layer problems. For example, in Figure 6 the interface
oscillations are seen to decay for solutions of the Burgers sine wave problem as r0 is reduced.

Last, it is established that interface oscillations can also be mitigated by varying kn since r0

and kn are shown to play complementary roles. The influence of kn on the oscillations is
investigated because a smaller kn value implies a shorter non-uniform subdomain, which
should, at first glance, lead one to the conclusion that a given problem can be solved with less

Figure 5. Steady state pressure solutions with a boundary layer thickness equal to 10−6 and with grid parameters
Dx0=10−2, kn=2 and ka=15.
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Table II. Convergence of the Reynolds solution as r0 is decreased with
L=10−6, Dx0=0.01, kn=4, ka=15 and Dt=0.005

r nt rms (Dun) Commentsr0

0.8200014802 157 3.82917E−030.54 Large oscillations
0.53 0.8233345844 159 2.92099E−04 Large oscillations

0.8266682373 159 5.96837E−06 Small oscillations0.52
0.8300013564 161 4.47539E−06 Accurate solution0.51

Figure 6. Burgers sine wave solution at t=3p for n=1/(100p) and Dt=1/(200p) and with grid parameters Dx0=0.1,
kn=3 and ka=5.

grid points. It was previously noted with reference to Table II that corresponding to the
optimal value of r0, a threshold value of r (and hence of nt) is achieved. Indeed, for a chosen
FD scheme and each given value of Dx0, there exist threshold values for r and nt that
correspond to the optimal values of r0, and are independent of kn. Let the threshold values be
denoted by r* and nt*. As an example, the parameters r* and nt* for two values of kn and the
corresponding values of r0 are summarized in Table III for solutions of the Reynolds and
Burgers problems. The threshold values of r* and nt* were determined for each case by the
same procedure described with reference to the results of Table II. Examination of Table III
indicates that as kn is doubled from 2 to 4, the values of r* and nt* experience insignificant
changes. Therefore, the total number of grid points for which the oscillations are eliminated

Table III. Threshold growth factor r* and total number of grid points nt* for the
Reynolds problem with L=106, ka=15, Dt=0.005 and Dx0=10−2; and the Burgers

problem with n=1/(100p), ka=4, Dt=1/(200p) and Dx0=0.1

Non-uniform Reynolds problem Burgers problem
grid
parameters

CompactClassical Compact Classical

2 1 2442 2 1kn

0.45 0.75 0.50 0.85 0.50 0.75 0.50r0 0.80
0.850 0.850 0.833 0.830 0.753 0.752 0.735 0.735r*

24252525161161nt* 169168
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(nt*) is the same, irrespective of kn. This outcome is anticipated from the previous examination
of Table I, where it was observed that two different pairs of kn and r0 have yielded identically
accurate solutions with nearly identical values of nt, r and rms error. The same complementary
behavior of kn and r0 is observed in the solutions of the Burgers equation, the results of which
are also summarized in Table III.

The aforementioned effects on the interface oscillations by the grid distribution parameters
ka Dx0, r0 and kn can be interpreted by considering their influence on the resultant geometric
ratio r within the non-uniform subdomain. For each scheme and each value of Dx0 considered,
a range of the geometric ratio exists in which the oscillations are reduced until they are
completely eliminated (provided of course that the boundary layer is resolved by a proper
value of ka). However, large variations in ka, which attenuate the oscillations, are not sufficient
to bring r into the range where the oscillations are completely eliminated. On the other hand,
small variations in either kn or r0 bring the value of r into the range where oscillations are
promptly mitigated. These observations are supported by the conclusions of Section 2.2, where
it was shown that the geometric factor r is weakly dependent on ka and Dx0 and strongly
dependent on kn and r0.

Finally, interface oscillations in two-dimensional boundary layer problems are investigated
by examining solutions of the two-dimensional Reynolds equation of lubrication. The same
behavior with regard to interface oscillations observed in the one-dimensional cases is observed
in their two-dimensional counterparts. For example, in Figure 7, the oscillations are seen to
decrease as the value of r0x is lowered from 0.57 to 0.53. A closer view of the effect of r0x on
the interface oscillations in the x-direction is shown in Figure 8, where the pressure at the grid
point (x=0.15, y=0.5) is plotted versus r0x with all other grid parameters held fixed. The
value of the pressure is seen to converge as r0x approaches a value of 0.5, which is identical to
the threshold value encountered in the one-dimensional case. Therefore, the two-dimensional
interface oscillations generated by the fourth-order FD schemes can be controlled by the grid
control parameters in the same manner as in the one-dimensional case.

5. RELATION TO MESH REYNOLDS NUMBER

In the previous sections, it was demonstrated that the observed oscillations at the interface of
two subdomains, one with a uniform and the other with a non-uniform grid distribution, are
due to an inappropriate distribution of grid points in the non-uniform subdomain. It was
further determined that these numerical oscillations were present in the solutions obtained by
the use of both compact and classical FD schemes, including the popular second-order FD
scheme. While a non-linear stability analysis is not possible, the theory of linear stability can
be used to predict a mesh Reynolds number threshold value of 2 for the second-order
discretization. The aim of this final section is to investigate whether a connection exists
between the mesh Reynolds number and the occurrence of interface oscillations.

The results of solving the Burgers sine wave problem with a centered, second-order FD
scheme are shown in Figure 9 for different values of the interface grid ratio r0. Along with the
FD solutions, the exact solution is shown for comparison. It can be observed that the interface
oscillations decrease in magnitude and finally disappear as r0 is reduced. An enlargement of the
steep region near x=0 is given in Figure 10 to better highlight this behavior. The results for
r0=0.6 track the exact solution rather closely, providing confidence that the FD solution has
converged and is free of spurious interface oscillations. The local mesh Reynolds number is
plotted for the four r0 cases considered in Figure 11. The results indicate that the presence and
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Figure 7. Two-dimensional steady state pressure solutions for the Reynolds equation with a trailing edge boundary
layer thickness equal to 10−6 and with grid parameters r0=0 57, 0.55 and 0.53; Dx0=10−2; kn=3; and ka=15.

Figure 8. Pressure solution at the point (x=0.15, y=0.5) for the two-dimensional Reynolds equation with L=10−6

and with grid parameters Dx0=10−2, kn=2 and ka=15.
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Figure 9. Burgers sine wave solution for n=10−2/p at t=3/p using second-order FD (Dt=1/(200p), Dx0=0.1,
kn=2, ka=4).

disappearance of the oscillations are unrelated to the mesh Reynolds number since not only
does the latter remain well above the threshold value of 2 (predicted by the theory of linear
stability) for most of the computational domain, but it does not change appreciably around the
interface, where the oscillations are present at higher values of r0.

6. CONCLUSIONS

Solutions of the non-linear Burgers and Reynolds equations, which possess sharp interior and
boundary layers, have been used to investigate the mitigation and elimination of scheme-
related spurious oscillations of fourth-order FD schemes. The effects of the grid control

Figure 10. Enlargement of boundary layer region in Figure 9.
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Figure 11. Local mesh Reynolds number for Burgers sine wave problem with n=10−2/p at t=3/p using second-order
FD scheme (Dt=1/(200p), Dx0=0.1, kn=2, ka=4).

parameters on the grid distribution within the non-uniform subdomains have been ascertained
in order to enable the prescription of an optimal grid distribution that resolves the boundary
and interior layers while avoiding the appearance of spurious oscillations.

For both the Reynolds and Burgers problems, numerical oscillations are observed to appear
around the interface between the uniform and the non-uniform grid subdomains. It is
demonstrated, however, that the interface is not the source of these oscillations. Rather, the
oscillations are due to low values of the grid progression ratio used to discretize the
non-uniform subdomains. In fact, it is indicated that for each scheme there is a threshold grid
ratio above which the numerical oscillations are eliminated. As conjectured in the literature,
ratios used to distribute grid points non-uniformly should remain close to 1 in order to
maintain the higher formal accuracy of finite difference approximations for uniform grids.
Indeed, it is observed in this work that as the grid ratios are increased well above the threshold
ratios, the solutions continue to improve.

This work demonstrates that high-order classical and compact schemes can be used with
confidence to efficiently solve one- or two-dimensional problems that possess stiff layers,
provided that scheme-related oscillations are eliminated by a proper choice of the grid
parameters kn and r0.

APPENDIX A. LEGENDRE POLYNOMIALS

On a local grid distribution (x)i= l,m, the kth Legendre interpolating polynomial of order m and
its derivatives at a location x are:

Lk(x)= 5
m

i=1
i"k

(x−xi)
xk−xi

, (34)

L %k(x)= %
m

l=1

5
m

i=1
i"k,l

(x−xi)
xk−xi

, (35)
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L¦k(x)= %
m

l=1

%
m

n=1

5
m

i=1
i"k,l,n

(x−xi)
xk−xi

. (36)

The fourth-order classical and compact FD approximations are derived using Legendre
interpolating polynomials of order 5. As an example, the fourth-order compact formulae for
a non-uniform mesh are presented. Using the relative increments with respect to the jth node
hi=Dxi/Dxj, the kth Legendre interpolating polynomial derivatives (35) and (36) can be
written at the local nodes xi as functions of (h)i=1,4, Dxj and Dxj

2 in the following forms:

L %k(xi)=Tki(h1, h2, h3, h4)/Dxj, (37)

L¦k(xi)=Ski(h1, h2, h3, h4)/Dxj
2. (38)

If the expression a1f %(xj−1)+ f %(xj)+b1f %(xj+1) is expanded by the use of the Legendre
interpolation for the first derivatives f %(xj−1), f %(xj) and f %%(xj+1) given by Equations (19) and
(37), and the contributions from the end points are canceled out, the constants a1 and b1 can
be determined from the solutions of the following two algebraic relations:!a1T12+b1T14= −T13

a1T52+b1T54= −T53

. (39)

The fourth-order compact FD scheme for the first derivative is then given by:

a1f %(xj−1)+ f %(xj)+b1f %(xj+1)= (r1f(xj−1)+j1f(xj)+t1f(xj+1))/Dxj, (40)

where the constants r1, j1 and t1 are:

Í
Á

Ä

r1= (a1T22+T23+b1T24),
j1= (a1T32+T33+b1T34),
t1= (a1T42+T43+b1T44).

(41)

The formulae provided by Rubin and Khosla [17] for a geometrically refined grid are hence
obtained.
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